

Gratings

Plane gratings Concave gratings Flatfield gratings Laser gratings

mechanically ruled holographically exposed 10-6000g/mm

blazed sinusoidal laminar

UV lenses

CaF2 MgF2 Quartz

plane spherical

Mirrors

flat concave toroidal

Al pure Al ptotected Al+MgF2 Au Ag enhanced

Features MMS Family

- Compact, permanently aligned system
- Robust and thermally stable
- Use for diverse measuring tasks
- Monolithic design

	Spectral range	Accuracy	Resolution
MMS 1	3051150 nm specification for the range 360900 nm	0.3 nm	10 nm
MMS UV	200400 nm specification for the range 220400	0.2 nm	3nm
MMS UV VIS	3051150 nm specification for the range 360900 nm	0.2 nm	7 nm

- Spectral Range: 0.9 to 1.7µm
- up to 2.4µm under development
- Spectral Resolution: < 20nm
- Accuracy: < 0.5nm

- Monolithic design
- Compact
- Sensitive
- Reliable
- Sealed
- Simultaneous Read-Out

Accuracy: < 0.3 nm

Straylight: < 0.1%

Diode Array

Hamamatsu

■ 512 or 1024 Pixel

Maximum Clock Rate 2 MHz

MCS UV NIR	190 – 1015 nm
MCS UV VIS	200 – 620 nm
MCS VIS	360 – 780 nm
MCS NIR	700 – 1100 nm

Measuring method	Transmission	Interference spectrum evaluation
Background	Spectral dependence of absorption constant	Evaluation of phase differences in the light reflected by optically transparent layers
Demands on sensor	High speed High wavelength reproducibility	High wavelength accuracy High wavelength reproducibility
Suitable CZ sensors	All MMS/MCS	MMS VIS for optical layer thickness measurement <40 μm MCS VIS/NIR <150 μm
Fields of application	Concentration analyses of fluids Filter measurement Measurement of architectural glass	Layer thickness measurement on transparent materials such as coating films, plastics, films

Measuring method	Emission	Remission	Reflection
Background	Spectral emission of light sources	Diffuse reflection	Directly reflected light
Demands on sensor	High wavelength accuracy High wavelength reproducibility Good spectral resolving power High light sensitivity	High light sensitivity High reproducibility	High wavelength accuracy
Suitable CZ sensors	All MMS/MCS Limited spectral resolution in case of very closely spaced lines	MMS VIS MCS UV-VIS MCS VIS	All MMS/MCS
Fields of application	Monitoring of plasms Measuring the solar spectrum Fluorescence Production screening of lamp Wavelength determination of		Measurement of metal surfaces

Process Analysis

Measuring Principle

e (I) dc = log
$$I_{in} = E$$

 I_{out}

I in: incident intensity

I out: emitted intensity

e (λ) : spectral extinction module

E: extinction (absorbance)

calibration curve: c = f(E)

for single component analysis at a single wavelength

or

for multicomponent analysis using Partial Least Squares

Measuring Principle

Interferences

Reflection of the incident light L of the upper and lover face of the optically transparent layer produce a shift between emitted beams L1 and L2.

$$d = \frac{1*}{2*n} \frac{\lambda_1}{\lambda_1} \frac{* \lambda_2}{-\lambda_2}$$

Evaluation

The interference pattern changes in dependance on the layer.

Phase evaluation of thin layers 0,5µm -1µm

Fast-Fourier Transformation of thick layer 2µm - 150 µm

Method for Layer Thickness Measurement X-ray Fluorescence Method

Non-contact layer thickness measurement

Principle

The primary X-rays fall on the sample at a right angle. A counter tube is located at a take-off angle. The spectrum is then evaluated.

Measuring range

The measuring range depends on the material and the software.

Single layers approx. 0.1 - 100 µm

Double layers <25 µm per layer

Remarks

- Multi-layer systems can be analyzed
- State-of-the-art measuring method, but still relatively expensive
- At present, few on-line applications possible

Methods for Layer Thickness Measurement - Beta Reflection Method

Non-contact thickness measurement of layers whose atomic number differs substantially from the substrate material.

Principle

An isotopic source emits beta rays . These fall upon the surface and interact with the materials of the layer and the substrate. The number of reflected electrons is counted.

Measuring range

The measuring range strongly depends on the material to be examined. For varnish, for example, it is 0.5 200 µm

Remarks

- Contact-free, non-destructive measurement
- High measuring accuracy

Method for Layer Thickness Measurement Interference Spectrum Evaluation

Non-contact layer thickness measurement of transparent materials

Principle

Evaluation of the reference pattern caused by the phase differences in the light reflected by the upper and lower boundary surfaces.

Remarks

Measuring range

- Upper limit depends on the spectrometer resolution
- MMS: 10 nm 40 µm optical layer thickness
- MCS: 10 nm 150 µm optical layer thickness

- Contact-free, non-destructive measurement
- Reflection and transmission measurement possible
- · Relatively insensitive to vibrations
- No hazardous or harmful radiation
- Simple installation for on-line use

System Setup Colour Measurement

Measuring Principle

The colour impression received from an illuminated body can be described by means of 3 colours. To determine the values the following data must be provided:

- 1. Spectral diffuse remission R (I) or transmission T (I) curve, obtained by spectral-photometric measurement of the sample using a corresponding measuring geometry.
- 2. Defined norm light types described as a function of relative intensity against wavelength.l rel (l)
- 3. Normalized spectralfunction x (I),y (I), z (I) that define the standard colour sensitive human eye

Evaluation

The tristimulis values can be derived from:

$$X=100*\int R (\lambda) * I (\lambda) * x (\lambda) d\lambda$$
$$\int I (\lambda) * y (\lambda) d\lambda$$

$$Y=100*\int R (\lambda) * I (\lambda) * y (\lambda) d\lambda$$
$$\int I (\lambda) * y (\lambda) d\lambda$$

Z=100*
$$\int R (\lambda) * I (\lambda) * z (\lambda) d\lambda$$

 $\int I (\lambda) * y (\lambda) d\lambda$

In order to achieve a better correspondence with subjective colorimetric distances the tristimulis values can be transformed into colour coordinates of difficult

colourspaces eye.

Software

ASPECT PLUS COLOUR THICKNESS **METHOD** MCA Labview Library C- Library

Interfaces

RS 422 PC RS 422 PC/T8 PCMCIA

Spectrometer units

MCS 501

MCS 551 UV

MCS 551 MS MCS 551 NIR

MCS 521 UV MCS 521 UV-VIS

MCS 521 VIS

MCS 522 MS

MCS 522 UV VIS

MCS 511 NIR

Probes

Monofibres Fibre bundles Y-Fibre bundles Immersion probes Immersion probes for reflection OMK 500 ATR-probes Collimator optics Measuring heads transmission, reflection Microscope adaptors

Light sources

CLD 500

CLH 500

CLX 500 BLX 500/4

BLX 500/6

2 channel multiplexer 4 channel multiplexer

Laser In-Situ Ammonia Monitor for Power Plants

Principle: differential absorption spectroscopy 1W CO₂ -Laser;10,80 μm/ 10,78 μm

Lower Detectable

Limit: <1 ppm Switching Frequency: 1 KHz Measuring Length: 1 - 20 m

Application: Waste incineration plants

Power plants